ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
R. K. S. Rathore, P. Munshi, R. K. Jarwal, I. D. Dhariyal
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 227-234
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34109
Articles are hosted by Taylor and Francis Online.
Computerized tomography (CT) has been demonstrated to be a good technique for measuring point density (void fraction) in two-phase flow systems. Recently, improvements have been suggested regarding the choice of filter functions in CT methods. These methods are essentially based on the discrete implementation of the radon inversion formulas that are widely used in the medical imaging area. Such methods do not require any a priori information regarding the distribution of the density (or the void fraction). A very simple method involving the tomographic chord-segment inversion has been developed and tested for two-phase flows having radially symmetric density distributions. This method is much simpler and consumes less CPU time than more general methods of tomographic reconstruction. For test functions, the reconstructed density distributions are almost exact. For air/water bubbly flow data, the reconstructed values have a maximum deviation of ±0.03 g/cm3. The range of investigation of the air/water flow data was 0.6 to 0.9 g/cm3, i.e., a void fraction range of 40 to 10%. These results are comparable to the results obtained by the more general methods based on the radon inversion formulas.