ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
C. H. King, M. S. Ouyang, B. S. Pei, Y. W. Wang
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 211-226
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34108
Articles are hosted by Taylor and Francis Online.
A new technique of identifying the flow regimes of air/water two-phase flow in a vertical pipe is proposed. This technique is based on analyzing the statistical characteristics of the static and differential pressure signals by an optimum modeling method. The major concept of the optimum modeling method is to fit the two-phase flow pressure noise by autoregressive moving average (ARMA) models with an optimization technique. The results show that it is possible to identify the flow patterns from a set of “flow regime indices,” such as dynamic signature, order of dominant dynamics mode, and order of ARMA model. A computer code based on these indices has been built on an IBM-PC/XT microcomputer to perform two-phase flow pattern identification. The success probability of this code is ∼85% on the data base collected from our experimental work. The experimental data points are also indicated in a Taitel flow map and excellent matching has been shown, except for some points around the flow regime transition boundaries. These discrepancies are due to the subjective categorization of the flow regimes.