ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Yoshiyuki Kataoka, Hiroaki Suzuki, Michio Murase, Isao Sumida, Tetsuo Horiuchi, Minoru Miki
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 147-156
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34103
Articles are hosted by Taylor and Francis Online.
A natural circulation boiling water reactor (BWR) with a rated capacity of 600 MW(electric) has been conceptually designed for small- and medium-sized light water reactors. The components and systems in the reactor are simplified by eliminating pumped recirculation systems and pumped emergency core cooling systems. Consequently, the volume of the reactor building is ∼50% of that for current BWRs with the same rated capacity; the construction period is also shorter. Its thermal-hydraulic characteristics, critical power ratio (CPR) and flow stability at steady state, decrease in the minimum CPR (ΔMCPR) at transients, and the two-phase mixture level in the reactor pressure vessel (RPV) during accidents are investigated. The 8 × 8 fuel bundles with 3.1-m active lengths are used to achieve high seismic resistance and good thermal-hydraulic characteristics. Operation pressure of 7.0 MPa and volumetric power density of 34.2 kW/ℓ are determined from the CPR and flow stability limitations. The maximum ΔMCPR appears at load rejection transient and is <0.05. The CPR under normal operation is >1.3, which is a sufficient margin for the limitation value of 1.12. The two-phase mixture level in the RPV during an accident does not decrease to lower than the top of the core; the core uncovery and heatup of fuel cladding would not occur during any loss-of-coolant accident.