ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Alan L. Nichols, Jolyon P. Mitchell
Nuclear Technology | Volume 81 | Number 2 | May 1988 | Pages 205-232
Technical Paper | Nuclear Aerosol Science / Nuclear Safety | doi.org/10.13182/NT88-A34093
Articles are hosted by Taylor and Francis Online.
Reliable aerosol data are required to assist in the safety assessments of nuclear plants. Studies have been undertaken to quantify the form of any airborne radioactive debris released from a wide range of nuclear facilities involving fuel fabrication, reprocessing, and waste management. Furthermore, safety assessments require some knowledge of the aerosols that could be generated as a consequence of hypothetical severe accidents. Conditions within the industrial plant may not be conducive to standard aerosol sampling procedures, while simulant and irradiated fuel studies of reactor accidents may require experiments to be conducted over a wide range of temperatures and pressures. The aerosols predicted to form in thermal light water reactor accidents could be generated at high temperatures and pressures in the presence of steam, while the sodium metal coolant of fast breeder reactors could burn to form dense clouds of aerosol affecting the transport of any fuel debris released from the damaged core. Such factors limit the number of aerosol sampling and analysis techniques that can be successfully used in such studies, and care has to be taken in choosing the most appropriate analytical techniques. The methods used to measure the physical properties of nuclear aerosols are highlighted. The merits and disadvantages of each method are discussed, and guidelines are provided for future developments.