ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Werner Schöck, Helmut Bunz, Robert E. Adams, Melvin L. Tobias, Frank J. Rahn
Nuclear Technology | Volume 81 | Number 2 | May 1988 | Pages 139-157
Technical Paper | Nuclear Aerosol Science / Nuclear Safety | doi.org/10.13182/NT88-A34089
Articles are hosted by Taylor and Francis Online.
Aerosol behavior is a central topic in the overall determination of source terms of accidents in nuclear power plants. Aerosol behavior codes have been developed for ∼20 yr and their state of development is considered to be well advanced. The acceptance of results of the calculations, however, was poor as far as physical understanding and the results of basic research were involved. Proof that the codes are complete and the choice of models is adequate for a situation during an accident required large-scale integral experiments that simulated real conditions as closely as necessary and possible. Recently, three large-scale experimental programs were carried out dealing with the behavior of aerosols during core-melt accidents in light water reactors (LWRs). In the Nuclear Safety Pilot Plant (NSPP) program, the principal behaviors of different insoluble aerosols and of mixed aerosols were measured in dry air atmospheres and in condensing steam-air atmospheres contained in a 38-m3 steel vessel. The Demonstration of Nuclear Aerosol Behavior (DEMONA) program used a 640-m3 concrete containment model to simulate typical accident sequence conditions, and measured the behavior of different insoluble aerosols and mixed aerosols in condensing and transient atmospheric conditions. Part of the LWR Aerosol Containment Experiments (LACE) program was also devoted to aerosol behavior in containment; an 852-m3 steel vessel was used, and the aerosols were composed of mixtures of insoluble and soluble species. The results of these experiments provide a suitable data base for validation of aerosol behavior codes. Fundamental insight into details of aerosol behavior in condensing environments has been gained through the results of the NSPP tests. Code comparisons have been and are being performed in the DEMON A and LACE experiments.