ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Werner Schöck, Helmut Bunz, Robert E. Adams, Melvin L. Tobias, Frank J. Rahn
Nuclear Technology | Volume 81 | Number 2 | May 1988 | Pages 139-157
Technical Paper | Nuclear Aerosol Science / Nuclear Safety | doi.org/10.13182/NT88-A34089
Articles are hosted by Taylor and Francis Online.
Aerosol behavior is a central topic in the overall determination of source terms of accidents in nuclear power plants. Aerosol behavior codes have been developed for ∼20 yr and their state of development is considered to be well advanced. The acceptance of results of the calculations, however, was poor as far as physical understanding and the results of basic research were involved. Proof that the codes are complete and the choice of models is adequate for a situation during an accident required large-scale integral experiments that simulated real conditions as closely as necessary and possible. Recently, three large-scale experimental programs were carried out dealing with the behavior of aerosols during core-melt accidents in light water reactors (LWRs). In the Nuclear Safety Pilot Plant (NSPP) program, the principal behaviors of different insoluble aerosols and of mixed aerosols were measured in dry air atmospheres and in condensing steam-air atmospheres contained in a 38-m3 steel vessel. The Demonstration of Nuclear Aerosol Behavior (DEMONA) program used a 640-m3 concrete containment model to simulate typical accident sequence conditions, and measured the behavior of different insoluble aerosols and mixed aerosols in condensing and transient atmospheric conditions. Part of the LWR Aerosol Containment Experiments (LACE) program was also devoted to aerosol behavior in containment; an 852-m3 steel vessel was used, and the aerosols were composed of mixtures of insoluble and soluble species. The results of these experiments provide a suitable data base for validation of aerosol behavior codes. Fundamental insight into details of aerosol behavior in condensing environments has been gained through the results of the NSPP tests. Code comparisons have been and are being performed in the DEMON A and LACE experiments.