ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
M. D. Mathew, S. latha, G. Sasikala, S. L. Mannan, P. Rodriguez
Nuclear Technology | Volume 81 | Number 1 | April 1988 | Pages 114-121
Technical Paper | Material | doi.org/10.13182/NT88-A34083
Articles are hosted by Taylor and Francis Online.
The creep properties of three heats of nuclear-grade Type 316 stainless steel have been studied at temperatures of 823, 873, and 923 K. Creep tests have been carried out over a wide range of stresses that produced rupture times varying from a few days to ∼10yr. Log-log plots of stress versus rupture life were linear at 823 K, while a rapid decrease in stress to rupture was observed at longer lives at 923 K. A power law relationship indicative of dislocation creep was found between steady-state creep rate and applied stress. The variation of rupture ductility with rupture life at 823 K exhibited a minimum. At other temperatures, a peak in ductility was observed. Pronounced heat-to-heat variations have been observed in the creep-rupture properties at all the test conditions. The variations have been attributed to differences in the chemical composition and in the grain size of the material. A comparison of the results with the American Society of Mechanical Engineers design criteria for time-dependent deformation is also presented.