ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
William L. Daugherty, K. Linga Murty
Nuclear Technology | Volume 80 | Number 3 | March 1988 | Pages 443-450
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT88-A34068
Articles are hosted by Taylor and Francis Online.
X-ray diffraction techniques have been used to measure the texture of Zircaloy-4, which is described quantitatively by the crystallite orientation distribution function (CODF). Procedures for evaluating the anisotropy parameters in the modified Hill equation (R and P) from the CODF and their use in predicting creep behavior are reviewed. Alternatively, the same anisotropy parameters can be obtained from creep test data using appropriate mechanical deformation concepts. These R and P parameters are used to predict the creep behavior of fuel rod cladding both out of pile and in pile. The procedures involved in obtaining the anisotropy parameters from either crystallographic texture data or creep test data are summarized. These two approaches, previously discussed separately in the literature, are brought together for a direct comparison. Predictions of creep behavior based on texture measurements are compared with creep data. The utility of the anisotropy parameters in predicting postirradiation cladding dimensions is illustrated by reviewing the work of another research group. Excellent agreement between their model predictions and experimental results of postirradiation examination is observed.