ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Randy L. Simmons, Niel D. Jones, Frank D. Popa, Donald E. Mueller, James E. Pritchett
Nuclear Technology | Volume 80 | Number 3 | March 1988 | Pages 343-348
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34058
Articles are hosted by Taylor and Francis Online.
The design advantages achievable from the use of zirconium diboride (ZrB2) integral fuel burnable absorbers (IFBAs) in two- and three-loop pressurized water reactor (PWR) cores are examined. The ZrB2 IFBAs were designed and have been extensively tested for use in PWRs. Two fuel loading patterns that utilize IFBAs are analyzed: (a) a three-loop core with an 18-month cycle, very low radial leakage loading pattern, and reduced vessel fluence concerns; and (b) a two-loop core with an annual cycle, very low radial leakage loading pattern, and natural uranium axial blankets (low axial leakage). Both designs demonstrate the versatility of IFBAs in difficult fuel loading patterns. Both designs demonstrate well-behaved radial and axial power peaking factors for annual (two-loop core) and 18-month (three-loop core) cycles. The ZrB2 IFBAs also provide added flexibility in the placement of fresh fuel. This flexibility can improve shutdown margin by placing fresh fuel under control rod locations and can improve fuel cycle cost. Neither design would have been possible with discrete burnable absorbers. By analyzing the two very different designs, it can be seen that ZrB2 IFBAs can be used in tightly constrained fuel loading patterns and will provide added flexibility and/or fuel cycle cost savings in future fuel management strategies.