ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Rudolf Seiler, Rakesh Chawla, Kurt Gmür, Helmut Hager, Hans-Dieter Berger, Roland Böhme
Nuclear Technology | Volume 80 | Number 2 | February 1988 | Pages 311-323
Technical Paper | Advanced Light Water Reactor / Fission Reactor | doi.org/10.13182/NT88-A34054
Articles are hosted by Taylor and Francis Online.
Comparisons of calculated and measured neutron balance components are reported for the 7.5% fissile plutonium reference test lattice of the PROTEUS—light water high conversion reactor (LWHCR) phase II program, both wet (with H2O) and dry (100% void). Special experimental techniques have been developed and applied, particularly for k∞, and the range of directly measured reaction rate ratios has been extended. For the two cell codes tested, WIMS-D/1981 library and KARBUS/KEDAK-4, specific shortcomings have been identified; the new measurements have been found to be significantly more representative and accurate than the earlier phase I experiments. The k∞, void coefficient for the phase II reference lattice between 0 and 100% void has been found to be qualitatively different from those assessed for the earlier phase I test lattices. Consideration of the individual void coefficient components show this to be largely a consequence of the more LWHCR-representative fuel rod diameter and plutonium isotopic composition of the fuel currently being used. Results of control rod studies conducted for the phase II reference lattice—both wet and dry—serve to illustrate the efforts being made toward investigations of special power reactor features.