ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Tina J. Tanaka, Steven P. Nowlen, Kofi Korsah, Richard T. Wood, Christina E. Antonescu
Nuclear Technology | Volume 143 | Number 2 | August 2003 | Pages 152-160
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3405
Articles are hosted by Taylor and Francis Online.
Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The results of previous smoke exposure studies have been reported in various publications. The major immediate effect of smoke has been to increase leakage currents and to cause momentary upsets and failures in digital systems. This paper presents new results from conformal coatings, memory chips, and hard drive tests.The best conformal coatings were found to be polyurethane, parylene, and acrylic (when applied by dipping). Conformal coatings can reduce smoke-induced leakage currents and protect against metal loss through corrosion. However conformal coatings are typically flammable, so they do increase material flammability. Some of the low-voltage biased memory chips failed during a combination of high smoke and high humidity. Typically, smoke along with heat and humidity is expected during fire, rather than smoke alone. Thus, due to high sensitivity of digital circuits to heat and humidity, it is hypothesized that the impact of smoke may be secondary.Low-voltage (3.3-V) static random-access memory (SRAMs) were found to be the most vulnerable to smoke. Higher bias voltages decrease the likelihood of failure. Erasable programmable read-only memory (EPROMs) and nonvolatile SRAMs were very smoke tolerant. Failures of the SRAMs occurred when two conditions were present: high density of smoke and high humidity. As the high humidity was present for only part of the test, the failures were intermittent. All of the chips that failed during the test recovered after enough venting.Hard disks were tested in severe environments but did not fail during the 2 h of monitoring.While the results of the tests documented in this report confirm that digital circuits can indeed be vulnerable to smoke, there is currently no practical, repeatable testing methodology, so it is not feasible to assess smoke susceptibility as part of environmental qualification. As a result, the most reasonable approach to minimizing smoke susceptibility is to employ design, implementation, and procedural practices that can reduce the possibility of smoke exposure and enhance smoke tolerance. Traditional approaches to mitigate its effects in digital safety instrumentation and control, such as redundancy, separation, defense in depth, as well as adherence to standards (e.g., the Institute of Electrical and Electronics Engineers' IEEE 384) and the Code of Federal Regulations Appendix R of 10 CFR 50, should continue to be applied.