ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Yigal Ronen, Melvin J. Leibson, Alvin Radkowsky
Nuclear Technology | Volume 80 | Number 2 | February 1988 | Pages 225-239
Technical Paper | Advanced Light Water Reactor / Fission Reactor | doi.org/10.13182/NT88-A34047
Articles are hosted by Taylor and Francis Online.
The results of the effect of various parameters on the reactivity void response of an advanced pressurized water reactor (APWR) containing mixed-oxide (plutonium and 238U) fuel are presented. The parameters studied include the moderator-to-fuel ratio; the presence of 238U and 240Pu in the fuel; the presence of parasitic (thermal) absorbers; the variation of η of 239Pu as a function of energy; the assumption that the water in the reactor core upon voiding remains uniform in density; the ratio of 239Pu/241Pu atoms; and the treatment of neutrons in the resonance energy range. It is shown that using the WIMS-D code to determine neutron group constants at low levels of water loss (<40%) from the core is usually adequate for APWR studies and is conservative over the entire range studied. In borderline situations, the use of a methodology that provides a more rigorous treatment of neutron interaction in the resonance energy range is required. This is shown by use of the RABBLE code. Data on the effect of various parameters on the initial conversion ratio are given. In general, effects that harden the neutron spectrum for a fixed keff tend to increase the conversion ratio. In addition, the conversion ratio tends to increase as the fraction of 241Pu in the fissile fuel increases.