ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Othar K. Tallent, Earl W. McDaniel, Karen E. Dodson, Terry T. Godsey
Nuclear Technology | Volume 79 | Number 3 | December 1987 | Pages 348-358
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A34024
Articles are hosted by Taylor and Francis Online.
Data correlations have demonstrated systematic relationships between important variables in hydrofracture grout formulation. The data are taken from an investigation to determine conditions for eliminating drainable water from the grout system. The two most important variables affecting drainable water are the amounts of Attapulgite-150 clay in the dry-solids blends and the ratios in which the blends are mixed with the waste. Empirical equations were developed relating (a) volume percent of drainable water, (b) time for free water adsorption, (c) weight percent of clay, (d) dry-blend liquid-waste mix ratio, (e) compressive strength, (f) weight percent of fly ash, and (g) pumping flow rate required for turbulent flow through 51-mm-i.d. pipe. The equations allow predictions of properties within the compositional range of the investigation from which the data were obtained. They also provide a relatively simple method that can be used to improve future test design, eliminate superfluous testing, decrease costs, and increase overall efficiency of individual investigations.