ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Tatsuhiko Uda, Yoshihiro Ozawa, Hajime Iba
Nuclear Technology | Volume 79 | Number 3 | December 1987 | Pages 328-337
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A34022
Articles are hosted by Taylor and Francis Online.
Melt refining as a means of uranium decontamination of metallic wastes by electroslag refining was examined. Electroslag refining was selected because it is easy to scale up to the necessary industrial levels. Various thicknesses of iron and aluminum cylinders with uranium concentrations close to actual metallic wastes were melted by adding effective fluxes for decontamination. Thin-walled iron and aluminum cylinders with a fill ratio (electrode/mold cross-section ratio) of 0.05 could be melted, and the energy efficiency obtained was 16 to 25%. The ingot uranium concentration of the iron obtained was 0.01 to 0.015 ppm, which was close to the contamination level of the as-received specimen, while for aluminum it was 3 to 5 ppm, which was a few times higher than the as-received specimen contamination level of ∼0.9ppm. To melt a thin aluminum cylinder in a steady state, with this fill ratio of 0.05, instantaneous electrode driving response control was desired. Electroslag refining gave better decontamination and energy economization results than by a resistance furnace.