ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
Miguel Ceceñas-Falcón, Robert M. Edwards
Nuclear Technology | Volume 143 | Number 2 | August 2003 | Pages 125-131
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3402
Articles are hosted by Taylor and Francis Online.
The study of the first harmonic mode of the neutron spectrum in a boiling water reactor (BWR) yields the capability to assess the decay ratio for the harmonic mode and anticipate the impact on the fundamental mode when an out-of-phase oscillation is about to take place. In this work, the neutron spectrum for a BWR is approximated as a linear combination of the fundamental and first harmonic modes, and these two modes are studied applying reduced order modal models. A stability estimator is constructed to monitor the development of the harmonic mode instability through the calculation of the decay ratio. To achieve an estimation of the decay ratio for each mode, the estimator requires the separation of both modes from the neutron spectrum, and a method to obtain these modes based on a bare homogeneous reactor is presented. The Reduced Order Modal Estimator is tested with computer-generated data and with data from the Ringhals Stability Benchmark.