ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Aaron Barkatt, Karen A. Michael, William Sousanpour, Alisa Barkatt, L. Miguel Penafiel, Pedro B. Macedo, Herbert G. Sutter
Nuclear Technology | Volume 78 | Number 1 | July 1987 | Pages 75-82
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A34011
Articles are hosted by Taylor and Francis Online.
A new family of ion exchange and sorption media has been developed and applied for the removal of radioactive contaminants from aqueous streams in nuclear power plant operations. The general principle in the development of these materials is optimization of their selectivity for species that significantly contribute to the radioactivity of these streams (e.g., cesium, iodine, and cobalt) in the presence of a large excess of other ions (e.g., sodium, potassium, magnesium, calcium, chlorine, and SO4). This results in improved effective capacity and service lifetime of these new materials compared with the performance of conventional broad-spectrum ion exchange resins. Other advantages include higher decontamination factors, shorter contact times, greater stability, and convenience of disposals. Examples of the new materials include Durasil 10, a high-capacity ion exchange medium for cesium and strontium, and Durasil 60 and 70, which are highly effective in the removal of iodine and cobalt, respectively. The performance of these new media has been characterized in laboratory studies, engineering-scale demonstration tests, and 1 to 2 yr of experience with the Durasil media in routine waste-water treatment in several nuclear power plants.