ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Warren F. Witzig, Sunil D. Weerakkody
Nuclear Technology | Volume 78 | Number 1 | July 1987 | Pages 24-33
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A34005
Articles are hosted by Taylor and Francis Online.
Past experiences such as the Bhopal incident in India (1985) and the Chernobyl reactor accident in the USSR (April 1986) stress the significance of timely evacuations as a protective measure against accidental releases of radioactivity or toxic material to the atmosphere. While timely evacuation has the potential to save many lives, there is a finite risk associated with the act of evacuation itself. From a detailed questionnaire, data were obtained on 320 past evacuation events that took place in the United States from 1972 to 1985 to quantify risks associated with evacuations. Subsequently, these risks are used to assess the societal impact associated with evacuations of sectors of different radii surrounding a nuclear power plant. It is found that risks associated with evacuation of a 16-km radius to be ∼100 times greater than the risks associated with a 3.2-km radius evacuation. Also, an individual’s fatality risk due to evacuation is found to be equal to the risk attributed to a radiation dose between 110 and 5800 mrem (0.0011 and 0.058 Gy), depending on the dose response model used to assess the radiation risk for a 320-km round-trip evacuation. This concept can be applied to nonnuclear incidents such as rail accidents and other industrial or natural incidents.