ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Lainsu Kao, Mujid S. Kazimi
Nuclear Technology | Volume 78 | Number 2 | August 1987 | Pages 170-184
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A33995
Articles are hosted by Taylor and Francis Online.
Analyses of the concrete attack and ex-vessel aerosol release using various assumptions for the molten corium/concrete interaction have been performed. The study involved variations in several parameters, such as initial debris temperature, amount of unoxidized zirconium, amount of melt, concrete ablation temperature, and concrete type. At high initial corium temperatures the periodic contact (nucleate-boiling-like) model leads to more rapid concrete attack, higher decomposition gas release, and higher fission product release than the gas film model. At low initial corium temperatures, when a corium crust is initially formed, the various heat transfer models do not lead to significant differences in the fission product releases. Besides the initial debris temperature, the most significant parameter in prediction of the fission product release is the amount of unoxidized zirconium. Among the various fission products, the nonvolatiles, such as lanthanum, are more sensitive to changes in the parameters.