ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Morris F. Osborne, Jack L. Collins, Richard A. Lorenz
Nuclear Technology | Volume 78 | Number 2 | August 1987 | Pages 157-169
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT87-A33994
Articles are hosted by Taylor and Francis Online.
Fission product release from fully irradiated light water reactor fuel under accident conditions and the chemical forms and behavior of the released material have been studied at high temperatures. This work has emphasized release from commercial fuels, but tracer-level tests using specific fission product species have been used in efforts to clarify chemical behavior. The specimens were heated in an induction furnace in flowing steam at temperatures of 1700 to 2300 K. The fractional releases of krypton, iodine, and cesium increased with temperature, reaching maxima of nearly 60% in 20 min. The release of tellurium varied strongly with the extent of cladding oxidation and approached that of cesium for completely oxidized cladding. In addition to some structural material, the major chemical forms in the furnace effluent appeared to include CsI, CsOH, silver, antimony, and tellurides of cesium and tin. The fractional releases of the volatile fission products correlated with the amount of fuel porosity, and the masses of aerosol collected increased with test temperature and oxidation. Comparison of our results with several fission product release models showed agreement ranging from good to poor.