ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Annalisa Manera, Tim H. J. J. van der Hagen
Nuclear Technology | Volume 143 | Number 1 | July 2003 | Pages 77-88
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT03-A3399
Articles are hosted by Taylor and Francis Online.
The characteristics of flashing-induced instabilities, which are of importance during the startup phase of natural-circulation boiling water reactors, are studied. Experiments at typical startup conditions (low power and low pressure) are carried out on a steam/water natural-circulation loop. The flashing and the mechanism of flashing-induced instability are analyzed. The effect of system pressure and steam volume in the steam dome is investigated as well.The instability region is found as soon as the operational boundary between single-phase and two-phase operation is crossed. Increasing pressure has a stabilizing effect, reducing the operational region in which instabilities occur. Nonequilibrium between phases and enthalpy transport are found to play an important role in the instability process. In contrast with results reported in the literature, instabilities can occur independently of the position of the flashing boundary in the adiabatic section of the loop. The period of the oscillation is found to be about twice the fluid transit time in the system.