ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Roger D. Spence, Anthony L. Wright
Nuclear Technology | Volume 77 | Number 2 | May 1987 | Pages 150-160
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A33980
Articles are hosted by Taylor and Francis Online.
Including fission product vapor interactions with aerosols in reactor accident calculations can significantly alter the predicted consequences of a given accident. For example, a high-velocity, short residence time accident can transport significant amounts of tellurium outside the reactor vessel on the aerosols rather than having the tellurium reacted on the vessel’s metal surfaces. In another scenario, a relatively stagnant situation allows equilibration of the vapor/aerosol interactions and deposition of the aerosols inside the core region. Consequently, most of the fission product vapors remain in the core region with the deposited aerosols. The sorption isotherms of CsOH-Ag, CsOH-Cr2O3, and CsI-Cr2O3 can be represented by modified Freundlich isotherm expressions. In addition, CsOH vapor interacts extremely with the iron species under accident conditions such that 0.6 wt% FeO in the aerosol can remove 10 to 15 wt% of the CsOH emitted in an accident.