ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
Simcha Stroes-Gascoyne, Lawrence H. Johnson, Dennis M. Sellinger
Nuclear Technology | Volume 77 | Number 3 | June 1987 | Pages 320-330
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A33972
Articles are hosted by Taylor and Francis Online.
Safety assessment of the used fuel disposal concept requires a study of the integrity of used fuel in contact with groundwater. In this context, the initial release of 137Cs and I29I from used Canada deuterium uranium fuel segments, exposed to water at 25°C, has been studied as a function of fuel irradiation history. Percentages of inventories released after 5 days of leaching are compared to stable xenon fuel-sheath gap inventories. Cesium-137/xenon and 129I/xenon release ratios average ∼0.2 for low linear power rating (LLPR) fuel. For high linear power rating fuel, ratios are considerably larger and may approach 1. For LLPR fuel, the ratios become larger when the leaching time is increased. It is proposed that these differences are related to the microstructure of used fuel. The results indicate that the source term for the instantaneous release of isotopes of cesium and iodine should include all of the fuel-sheath gap inventory. Power history data and calculated gas release data can be used to accurately estimate the contribution of the fuel-sheath gap inventory to the source term for radionuclide release.