ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Philippe J. Vernier, Philippe Solignac
Nuclear Technology | Volume 77 | Number 1 | April 1987 | Pages 82-91
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT87-A33954
Articles are hosted by Taylor and Francis Online.
Our work was restricted to elementary models of condensation, coupling a laminar water film with an air-steam mixture boundary layer, under steady-state conditions, for some simple physical situations. We tested two categories of models. The models in the first category are merely the set of balance equations for which Sparrow’s numerical solutions have been replaced by Rose’s closed-form solutions. The models in the second category make use of correlations of mass transfer obtained by the Chilton-Colburn analogy and assumed closure laws concerning heat transfer across the film. The closed form of the solutions enabled us to propose numerical algorithms without integration, which we programmed in BASIC language. The differences we found between the results of the experiment and those of the models are systematic and positive, the calculated values being 50% less than the experimental results, on average. Comparing the abilities of the models, the situation of laminar-forced convection along a flat plate, whether the mixture is superheated or not, is the only situation where the model, using boundary layer theory, gives exact results. For the situation of turbulent free convection along a vertical wall, e.g., the containment wall of a pressurized water reactor system, the model, using the Chilton-Colburn analogy, gives only approximate results.