ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Alexey Yu. Stankovsky, Vladimir V. Artisyuk, Masaki Saito
Nuclear Technology | Volume 142 | Number 3 | June 2003 | Pages 306-317
Technical Paper | Accelerators | doi.org/10.13182/NT03-A3392
Articles are hosted by Taylor and Francis Online.
This paper addresses radiological issues that are unique for accelerator-driven neutron generation with much attention given to the limited area in a spallation target that encloses the propagation of high-energy cascade reactions. At certain beam options, a cascade of neutron-producing processes leaves the alpha-emitting spallation products belonging to the class of rare earths, like 62146Sm, 64148Gd, 64150Gd, and 66154Dy, whose overall toxicity in a lead target might overrun the alpha-emitting activation product 84210Po. To suppress their accumulation, the concept of a heterogeneous liquid-metal spallation module is proposed. This concept envisages the separation of a spallation target into two zones with specifically designated roles of neutron production and neutron multiplication. The main idea is to localize the proton-induced neutron production in a material with Z number <60 so as to exclude accumulation of problematic rare earths. Radioactive 50126Sn from fission products is considered as a material for this zone. Such a configuration not only lifts the great deal of spallation product burden from the lead target but also helps in eliminating the most troublesome long-lived fission ash, and what is important is that, compared to the bulk lead target, there is no appreciable detrimental effect on the overall neutron production.