ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Constantine P. Tzanos
Nuclear Technology | Volume 76 | Number 3 | March 1987 | Pages 337-351
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A33919
Articles are hosted by Taylor and Francis Online.
A method was developed for faster than real-time liquid-metal fast breeder reactor intermediate heat exchanger (IHX) analysis for purposes of continuous on-line data validation, plant state verification, and fault identification. The basic feature of this method is the utilization of spatial nodes whose sizes vary with time. The use of time-variant node sizes leads to adequately accurate solutions with a few nodes and at short computation times. Applications of this methodology to reference IHX problems with the IBM 3033 machine showed that the computation time for steady-state analysis was ∼6 ms. For transient analysis, a computation time that was one-sixteenth of the real transient time was achieved. This time can be further reduced if the special sparse structure of the system Jacobian matrix is exploited. The analysis of the Experimental Breeder Reactor-II test 8A showed that the maximum difference between temperatures predicted by this methodology and measurements was ∼6K.