ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Jinsong Liu, Ivars Neretnieks, Bo H. E. Strömberg
Nuclear Technology | Volume 142 | Number 3 | June 2003 | Pages 294-305
Technical Paper | Radioisotopes | doi.org/10.13182/NT03-A3391
Articles are hosted by Taylor and Francis Online.
In the concept of deep geological disposal of spent nuclear fuel, a chemically reducing environment in the near field of a repository is favorable for retaining the radionuclides in the fuel. Water radiolysis can possibly change a reducing environment in the near field to an oxidizing environment. In this paper, the consequences of secondary water radiolysis, caused by radionuclides released from the spent nuclear fuel and dispersed in the bentonite buffer surrounding a canister, have been studied.The canister is assumed to be initially defective with a hole of a few millimeters on its wall. The small hole will considerably restrict the transport of oxidants through the canister wall and the release of radionuclides to the outside of the canister. The spent fuel dissolution is assumed to be controlled by chemical kinetics at rates extrapolated from experimental studies. Two cases are considered. In the first case it is assumed that secondary phases of radionuclides [such as amorphous Pu(OH)4 and AmOHCO3] do not precipitate inside the canister. The model results show that a relatively large domain of the near field can be oxidized by the oxidants of secondary radiolysis. In the second case it is assumed that secondary phases of radionuclides precipitate inside the canister, and the radionuclide concentration within the canister is controlled by its respective solubility limit. The amount of radionuclides released out of the canister will then be limited by the solubility of the secondary phases. The effect of the secondary radiolysis outside the canister on the rate of spent fuel oxidation inside a defective canister will be quite limited and can be neglected for any practical purposes in this case.