ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Trevor L. Cook, Steven M. Mirsky
Nuclear Technology | Volume 76 | Number 1 | January 1987 | Pages 166-171
Fourth International Retran Meeting | Heat Transfer and Fluid Flow | doi.org/10.13182/NT87-A33907
Articles are hosted by Taylor and Francis Online.
As a part of the U.S. Nuclear Regulatory Commission’s unresolved safety issue A-45 decay heat removal program, the Los Alamos National Laboratory (LANL) performed a TRAC-PF1 simulation of the Calvert Cliffs Unit 1 pressurized water reactor in a cooldown to residual heat removal (RHR) entry conditions after a loss of off-site power (LOSP). A detailed four-loop TRAC model developed for the A-49 pressurized thermal shock program was used. The LANL results indicated an inability to both cool down and depressurize the primary system sufficiently to meet RHR entry conditions using only the atmospheric dump valves and auxiliary pressurizer spray. A RETRAN-02/MOD3 analysis was performed for the same transient, using assumptions consistent with those in the LANL analysis. A fast-running one-loop RETRAN model was selected because of the inherent symmetry of the transient. The RETRAN results compared well with sensitivity analyses indicating that the pressurizer model dominates the transient signatures. A best estimate RETRAN analysis of the cooldown was performed using a more accurate set of assumptions to better understand actual plant operational responses. These results indicate that RHR entry could be achieved after an LOSP using only existing plant equipment and procedures.