ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Tsunetaka Banba, Takashi Murakami, Hideo Kimura
Nuclear Technology | Volume 76 | Number 1 | January 1987 | Pages 84-90
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A33899
Articles are hosted by Taylor and Francis Online.
The one-dimensional diffusion model of leaching was developed on the basis of the Soxhlet-type leaching experiment of waste glass. Emphasis was placed on proposing a model for the growth of surface layers and for an immobilized reaction inside these layers. The equations derived from the modeling were solved numerically and the resulting equations were implemented in a computer code named LEACH. The computed and measured leach rates of sodium, cesium, calcium, and strontium were in good agreement under the Soxhlet-type leaching condition. The computed results revealed that the growth of surface layers, including the immobilized reaction, plays an important role in the leach rates of elements, because the diffusion coefficients of surface layers were much different from those of the bulk glass, and because for calcium and strontium the immobilized reactions affected their leach rates. Therefore, in order to predict the leach rates of waste glasses by using the proposed model, the time dependence of the growth of surface layers should be measured experimentally.