ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Tsunetaka Banba, Takashi Murakami, Hideo Kimura
Nuclear Technology | Volume 76 | Number 1 | January 1987 | Pages 84-90
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A33899
Articles are hosted by Taylor and Francis Online.
The one-dimensional diffusion model of leaching was developed on the basis of the Soxhlet-type leaching experiment of waste glass. Emphasis was placed on proposing a model for the growth of surface layers and for an immobilized reaction inside these layers. The equations derived from the modeling were solved numerically and the resulting equations were implemented in a computer code named LEACH. The computed and measured leach rates of sodium, cesium, calcium, and strontium were in good agreement under the Soxhlet-type leaching condition. The computed results revealed that the growth of surface layers, including the immobilized reaction, plays an important role in the leach rates of elements, because the diffusion coefficients of surface layers were much different from those of the bulk glass, and because for calcium and strontium the immobilized reactions affected their leach rates. Therefore, in order to predict the leach rates of waste glasses by using the proposed model, the time dependence of the growth of surface layers should be measured experimentally.