ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NRC completes environmental review of Dresden SLR
The Nuclear Regulatory Commission has found that the environmental impacts of renewing the operating license of the Dresden nuclear power plant outside Chicago, Ill., for an additional 20 years are not great enough to prohibit doing so.
Harald Moers, Hanns Klewe-Nebenius, Hans J. Ache
Nuclear Technology | Volume 76 | Number 1 | January 1987 | Pages 51-59
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A33896
Articles are hosted by Taylor and Francis Online.
Aerosol samples consisting of fission products and elements of light water reactor structural materials were collected during laboratory-scale simulation of the heat-up phase of a core melt accident. The aerosol particles were formed in a steam atmosphere at temperatures of the melting charge between 1200 and 1900°C. The investigation of the samples by use of x-ray photoelectron spectroscopy (XPS) permitted the chemical speciation of the detected aerosol constituents silver, cadmium, indium, tellurium, iodine, and cesium. A comparison of the elemental analysis results obtained from XPS with those achieved from electron probe x-ray microanalysis revealed that aerosol particle surface and aerosol particle bulk are principally composed of the same elements. The compositions determined in dependence of the release temperature reflect the differing volatilities of the detected elements. Quantitative differences between the composition of surface and bulk have been observed only for those aerosol samples that were collected at higher melting charge temperatures. These samples show an enrichment of more volatile species at the particles’ surfaces. In order to obtain direct information on chemical species below the surface, selected samples were argonion bombarded. Changes in composition and chemistry were monitored by XPS, and the results were interpreted under consideration of possible influences of the sputter process on the surface composition.