ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Peter J. Jensen, James F. Lang, Jason Chao
Nuclear Technology | Volume 76 | Number 2 | February 1987 | Pages 279-289
Fourth International Retran Meeting | Heat Transfer and Fluid Flow | doi.org/10.13182/NT87-A33881
Articles are hosted by Taylor and Francis Online.
A method allowing individual representation of a ruptured steam generator tube without including it explicitly in the RETRAN-02 nodalization was investigated. The resulting methodology allows accurate representation of flow through a single ruptured tube without incurring prohibitive computing costs. The study considered a wide variety of fluid conditions at the rupture ranging from subcooled liquid to two-phase fluid and from choked to unchoked rupture flow. Although only one tube rupture geometry was considered, this study provides the groundwork from which methods specific to other geometries can be easily developed. Portions of this method were compared with RELAP5 calculations and good agreement was shown. This methodology was incorporated in a RETRAN-03 analysis of a steam generator tube rupture event in a Westinghouse two-loop plant. This included a case with a tube rupture accompanied by loss of off-site power as well as a case incorporating procedures for operator actions during a tube rupture event. The results indicate both the impact and the necessity of appropriate operator actions in such an event. The RETRAN-03 computer code was found to perform satisfactorily when this tube rupture modeling technique was incorporated. Faster than “realtime” computational speed was demonstrated on a Cyber 176 computer when using a fairly detailed RETRAN plant model (54 volumes, 82 junctions).