ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
A. K. Sengupta, J. Banerjee, T. Jarvis, T. R. G. Kutty, K. Ravi, S. Majumdar
Nuclear Technology | Volume 142 | Number 3 | June 2003 | Pages 260-269
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT03-A3388
Articles are hosted by Taylor and Francis Online.
Hyperstoichiometric uranium-plutonium mixed carbide fuel (U0.3Pu0.7)C1+x has been the driver fuel for the sodium-cooled Fast Breeder Test Reactor (FBTR) at Kalpakkam, India. The existing core is being slowly expanded by substituting the earlier fuel with hyperstoichiometric (U0.45Pu0.55)C1+x fuel for operation of the reactor at full power [40 MW(thermal)] and at higher linear heat rating of the fuel. To evaluate the fuel in terms of its in-reactor performance, some of the important out-of-pile thermophysical and thermomechanical property data like the coefficient of thermal expansion, thermal diffusivity, thermal conductivity, and hot hardness have been generated as a function of temperature. The out-of-pile chemical compatibility of the fuel with Type 316 stainless steel (20% cold-worked) cladding material has also been established experimentally. From the data generated in these measurements, it has been concluded that with this fuel the reactor could be operated at full power with a fuel linear heat rating of 400 W/cm. Out-of-pile compatibility experiments indicate that carburization of the clad by carbon transfer from the fuel would not be severe to cause any breach of clad during the residence time of the fuel in the reactor.