ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Mukesh Tayal, Ed Mischkot, Harve E. Sills, A. W. L. Segel
Nuclear Technology | Volume 76 | Number 2 | February 1987 | Pages 209-220
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT87-A33875
Articles are hosted by Taylor and Francis Online.
The ELOCA-A code models the thermomechanical behavior of CANDU fuel elements during high-temperature transients such as loss-of-coolant accidents. Calculations include sheath and pellet temperatures, strains (including creep), sheath oxidation, and beryllium-assisted cracking. The ELOCA-A code was developed by adding axial nodes to the ELOCA·MK2 code, which assumes axially uniform temperatures and strains. Thus, it is now possible to study the effects of axial variations such as end flux peaking, axial variations in the microstructure of Zircaloy due to brazing, axially nonuniform heat transfer, and axially nonuniform cross section due to the presence of appendages. Other features of ELOCA-A include choice of Urbanic-Heidrick or Baker-Just correlations for sheath oxidation and double-sided oxidation of a failed sheath. The ELOCA-A code shows reasonable agreement with axial variations in hoop strains measured at Chalk River Nuclear Laboratories. Calculations for some arbitrary transients confirm that axial variations in initial microstructure and in neutron flux can have a significant effect on fuel temperatures and strains.