ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Mukesh Tayal, Ed Mischkot, Harve E. Sills, A. W. L. Segel
Nuclear Technology | Volume 76 | Number 2 | February 1987 | Pages 209-220
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT87-A33875
Articles are hosted by Taylor and Francis Online.
The ELOCA-A code models the thermomechanical behavior of CANDU fuel elements during high-temperature transients such as loss-of-coolant accidents. Calculations include sheath and pellet temperatures, strains (including creep), sheath oxidation, and beryllium-assisted cracking. The ELOCA-A code was developed by adding axial nodes to the ELOCA·MK2 code, which assumes axially uniform temperatures and strains. Thus, it is now possible to study the effects of axial variations such as end flux peaking, axial variations in the microstructure of Zircaloy due to brazing, axially nonuniform heat transfer, and axially nonuniform cross section due to the presence of appendages. Other features of ELOCA-A include choice of Urbanic-Heidrick or Baker-Just correlations for sheath oxidation and double-sided oxidation of a failed sheath. The ELOCA-A code shows reasonable agreement with axial variations in hoop strains measured at Chalk River Nuclear Laboratories. Calculations for some arbitrary transients confirm that axial variations in initial microstructure and in neutron flux can have a significant effect on fuel temperatures and strains.