ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Kazuhiro Sawa, Tsutomu Tobita
Nuclear Technology | Volume 142 | Number 3 | June 2003 | Pages 250-259
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT03-A3387
Articles are hosted by Taylor and Francis Online.
In current high-temperature gas-cooled reactors (HTGRs), Tri-isotropic (TRISO)-coated fuel particles are employed as fuel. In safety design of the HTGR fuels, it is important to retain fission products within particles so that their release to primary coolant does not exceed an acceptable level. From this point of view, the basic design criteria for the fuel are to minimize the failure fraction of as-fabricated fuel coating layers and to prevent significant additional fuel failures during operation. The maximum burnup of the first-loading fuel of the High Temperature Engineering Test Reactor (HTTR) is limited to 3.6%FIMA (% fission per initial metallic atom) to certify its integrity during the operation. In order to investigate fuel behavior under extended burnup condition, irradiation tests were performed. The irradiation was carried out as HRB-22 and 91F-1A capsule irradiation tests. The fuel for the irradiation tests was called extended burnup fuel, whose target burnup and fast neutron fluence were higher than those of the first-loading fuel of the HTTR. In order to keep fuel integrity up to over 5%FIMA, the thickness of buffer and SiC layers of fuel particle were increased. The fuel compacts were irradiated in the HRB-22 and the 91F-1A capsules at the High Flux Isotope Reactor of Oak Ridge National Laboratory and at the Japan Materials Testing Reactor of the Japan Atomic Energy Research Institute, respectively. The comparison of measured and calculated release rate-to-birth rate ratios showed that there were additional failures in both irradiation tests. A pressure vessel failure model analysis showed that no tensile stresses acted on the SiC layers even at the end of irradiation and no pressure vessel failure occurred in the intact particles even in a particle with thin buffer layer with failed OPyC layer. The presumed failure mechanisms are additional through-coatings failure of as-fabricated SiC-failed particles or an excessive increase of internal pressure by the accelerated irradiation. Further study is needed to clarify the failure mechanism.