ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jae Young Lee, Hee Cheon No
Nuclear Technology | Volume 75 | Number 2 | November 1986 | Pages 205-214
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT86-A33863
Articles are hosted by Taylor and Francis Online.
A computer code, FAUST (Flow Analysis of U-tube Steam generators), for U-tube steam generator design analysis is developed on the basis of the pressurized water reactor core transient analysis code, THERMIT. The original (x, y, z) coordinates used in THERMIT are transformed into the cylindrical (r, θ, z) coordinates for FAUST, which are better fitted in the geometry of steam generators. To couple the primary side with the secondary side, a one-dimensional tube representative of a computational cell in the heat transfer model is developed with a geometrical mapping between the primary and secondary sides. The special unitary group SU(2) is used to treat the complex geometry of the U-bend region for frictional wall force. A form loss model for tube support plates in two-phase flow is implemented in the code. The steam dome model developed here enables us to consider the different amounts of feedwater distributed into the hot and cold sides of the downcomer. Measured data from the steam generator at the BUGEY 4 nuclear power plant are used for the assessment of FAUST. Predicted results for the measured parameters are in good agreement with measured data: circulation ratio within 8% error and total power within 2% error. Considerable liquid recirculation is found in the U-bend region as the Combustion Engineering design code CALIPSOS shows.