ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Vistra’s Perry nuclear plant approved for license renewal
Texas-based Vistra Corporation has announced that its license renewal application for the Perry nuclear power plant was approved by the Nuclear Regulatory Commission. The plant first connected to the grid in 1986 and is still operating under its original 40-year license, which was set to expire next year.
Masami Matsuda, Kiyomi Funabashi, Takashi Nishi, Hideo Yusa, Makoto Kikuchi
Nuclear Technology | Volume 75 | Number 2 | November 1986 | Pages 187-192
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT86-A33860
Articles are hosted by Taylor and Francis Online.
Pyrolysis of spent ion exchange resins is one of the most effective methods for reducing radioactive waste volume and for making the final waste form more stable. Fundamental experiments were performed to clarify the pyrolysis characteristics of anion and cation exchange resins. Residual elemental analyses and off-gas analyses showed that the decomposition ratio of cation resins was only 50 wt% at 600°C, while that of anion resins was 90 wt% at 400°C. Infrared spectroscopy for cation resins attributed its low decomposition ratio to formation of a highly heat-resistant polymer (sulfur bridged) during pyrolysis. Measurements of residual hygroscopicity and cement package strength indicated that the optimum pyrolysis temperatures for preventing resin swelling and package expansion were between 300 and 500°C.