ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Alex Galperin, Meir Segev, Alvin Radkowsky
Nuclear Technology | Volume 75 | Number 2 | November 1986 | Pages 127-133
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33855
Articles are hosted by Taylor and Francis Online.
The results are presented of a research project that is aimed at designing a gadolinium burnable poison (BP) system for complete reactivity control of a pressurized water reactor (PWR) core during the “equilibrium” cycle, resulting in the elimination of the soluble boron system, which represents a considerable saving in both capital and operating costs. A flat and strong negative moderator temperature coefficient is assured for a poison-free moderator. The design analysis of a core, heavily loaded with gadolinium BP rods, was based on a BGUCORE neutronic package and cluster model of a fuel assembly. The project objective was achieved by a novel lumped gadolinium BP rod, designed as an annulus of gadolinium, clad by zirconium, and inserted into vacant guide thimbles of fresh-fuel assemblies. Specific combinations were found for the inner/outer radii of the poison ring, gadolinium densities, and number of rods per assembly, resulting in an almost flat criticality curve during the cycle. A reactivity swing of ∼1% ΔK can be easily controlled by an existing system of control rods. Comparison of the fuel cycle length of a gadolinium-controlled core with that of the reference, soluble, boron-controlled core indicated that there is no penalty due to residual poison at end of life. Unique guidelines for the fuel loading strategy were applied to find a practical fuel-shuffling scheme by which the design and operational constraints of a typical PWR core of current design were satisfied. Several problems should be solved for a practical implementation of the presented design relative to operational and safety requirements of the existing control rod system. Adequate movement of the regulating rods should be determined and shutdown margins of the safety rods should be ascertained. Final judgment of the feasibility of the concept may be made following the solution of these and other regulatory-related issues.