ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Mario Dalle Donne*, Giacinto P. Tartaglia†
Nuclear Technology | Volume 75 | Number 3 | December 1986 | Pages 298-325
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33843
Articles are hosted by Taylor and Francis Online.
The multiphase coolant flow across the perforated immersion plate during a hypothetical core disruptive accident in a liquid-metal fast breeder reactor was simulated in a one-dimensional model. Extending from previous work with one-phase flow, water-air mixtures were used to test two-phase behavior. A large experimental matrix included systematic variation of the following parameters: geometry of the immersion plate (perforation ratio, number of the holes), height of the fluid head over the immersion plate, air volume fraction, size of the air bubbles, and acceleration of the fluid. The pressure drop across the immersion plate, the forces acting on the immersion plate and on the upper plate, acceleration and displacement of the piston, the air volume fraction, and the size of the air bubbles were measured in a wide range of Strouhal and acceleration numbers. The flow pattern downstream of the immersion plate was filmed with a high- speed camera. The following correlations were investigated: