ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Kohtaro Ueki, Yoshihito Namito, Takayoshi Fuse
Nuclear Technology | Volume 74 | Number 2 | August 1986 | Pages 164-175
Technical Paper | Nuclear Safety | doi.org/10.13182/NT86-A33801
Articles are hosted by Taylor and Francis Online.
On-board experiments were carried out in a spent-fuel shipping vessel, the Pacific Swan, in which 13 casks of TN-12A and Excellox 3 were loaded in five holds, and neutron and gamma-ray dose rates were measured on the hatch covers of the holds. Before shipping those casks, dose rates were also measured on the cask surfaces, one by one, to eliminate radiation from other casks. The Monte Carlo coupling technique was employed successfully to analyze the measured neutron dose rate distributions in the spent-fuel shipping vessel. Through this study, the Monte Carlo coupling code system, MORSE-CG/CASK-VESSEL, on which the MORSE-CG code was based, was established. The agreement between the measured and the calculated neutron dose rates on the TN-12A cask surface was quite satisfactory. The calculated neutron dose rates agreed with the measured values within a factor of 1.5 on the hold 3 hatch cover and within a factor of 2 on the hold 5 hatch cover in which the concrete shield was fixed in the Pacific Swan.