ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Ulrich Grundmann, Sören Kliem
Nuclear Technology | Volume 142 | Number 2 | May 2003 | Pages 146-153
Technical Paper | OECD/NRC MSLB Benchmark | doi.org/10.13182/NT03-A3380
Articles are hosted by Taylor and Francis Online.
The Organization for Economic Cooperation and Development (OECD) Main Steam Line Break (MSLB) Benchmark was defined to validate the thermal-hydraulic system codes coupled with three-dimensional (3-D) neutron kinetic codes. The reference problem is an MSLB in a pressurized water reactor at end of cycle. The analyses were performed with the 3-D core model DYN3D, the thermal-hydraulic system code ATHLET, and the coupled code DYN3D/ATHLET. The results of the DYN3D and ATHLET simulations based on the specification are compared with the results of other participants in the final OECD reports. The effect of the thermal-hydraulic nodalization of the core, i.e., the number of coolant channels, and the influence of the coolant mixing inside the pressure vessel are studied in the paper. Calculations with a reduced number of coolant channels are performed often in coupled calculations for saving computational time. Results of a 25-channel model were compared with the 177-channel calculation (1 channel per assembly). The results for global parameters like nuclear power show only small differences for the two models; however, the prediction of local parameters such as maximum fuel temperatures requires a detailed thermal-hydraulic modeling. The effect of different coolant mixing within the reactor pressure vessel is investigated. It is shown that the influence of coolant mixing mitigates the accident consequences when 3-D neutron kinetics is applied. In case of point kinetics, coolant mixing leads to an opposite effect. To profit from the 3-D core model, a realistic description of the coolant mixing in the coupled codes is a topic of further investigations.