ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Takaharu Fukuzaki, Takashi Kiguchi
Nuclear Technology | Volume 72 | Number 3 | March 1986 | Pages 291-300
Technical Paper | Radiation Protection and Health Physics Practices and Experience in Operating Reactors Internationally / Fission Reactor | doi.org/10.13182/NT86-A33767
Articles are hosted by Taylor and Francis Online.
Effective use of the measured readings of sensors in on-line plant monitoring has been studied, based on an error theory. Both the measured reading and the calculated one, obtained by an analytical model of the plant, are treated as observed values, and the maximum-likelihood estimator is determined so as to minimize its mean-squared error. The difference between the estimator and the calculated reading is used to adapt the model to the current plant state and to increase accuracy of the calculated reading. The index of systematicness, which indicates the mutual independence of the two observed values, has been evaluated to determine the step in the procedure where the above adaptation is to be inserted. The error-theory-based model adaptation procedure has been experimentally applied to boiling water reactor power distribution calculations, and its performance has been verified in simulation calculations at different core states and different numbers of in-core neutron monitors by evaluating the expected error of the calculated readings. Compared to the adaptation, which uses the measured readings instead of the estimator, the error is typically lowered by more than 2% and is less affected by the number of monitors.