ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Ramesh Dayal, Richard F. Pietrzak, James H. Clinton
Nuclear Technology | Volume 72 | Number 2 | February 1986 | Pages 184-193
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT86-A33740
Articles are hosted by Taylor and Francis Online.
A knowledge of extra-trench processes related to oxidation-induced geochemical changes that are likely to occur when iron-rich, anoxic trench waters encounter an oxidizing environment along a redox gradient is essential for modeling radionuclide transport at low-level waste (LLW) disposal sites. The results of laboratory oxidation experiments on several trench leachates from the Maxey Flats site show that, upon oxidation, a series of geochemical changes were initiated that resulted in a drastically different solute geochemistry, involving oxidation of ferrous iron and subsequent precipitation of ferric oxyhydroxide, changes in alkalinity and acidity, a drastic increase in redox potential (Eh), and generally relatively little change in the concentrations of 60Co, 137Cs, and 85Sr in solution. The observations made in this study have important geochemical implications for the modeling of LLW sites in that the source term as an input parameter cannot be assumed to be constant, both spatially and temporally. The acid-generating potential and buffering capacity of an anoxic source term are important geochemical controls that maintain a balance between acidity and alkalinity and largely determine the nature and extent of oxidation-induced geochemical changes likely to occur along a redox gradient. The presence of organic chelating agents can alter the source term geochemistry to such an extent that authigenic ferric oxyhydroxide, which represents a geochemical discontinuity at the redox interface along leachate migration paths, proves to be a relatively ineffective sink for radionuclides.