ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hans Jordan, Philip M. Schumacher, Vladimir Kogan
Nuclear Technology | Volume 72 | Number 2 | February 1986 | Pages 148-157
Technical Paper | Nuclear Safety | doi.org/10.13182/NT86-A33737
Articles are hosted by Taylor and Francis Online.
A two-component aerosol system is investigated using the MSPEC code, which models the dynamic behavior of particle composition as a function of particle size. The predicted aerosol concentration behavior is shown to be sensitive to several parameters and model choices, in contrast to the situation for singlecomponent aerosol systems, where these parameters and models appear to play a distinctly uncritical role. In addition, the predicted aerosol concentration behavior is shown to significantly diverge from that predicted by MSPEC using a “single-component” model mode that assumes uniform particle composition across the size distribution. This latter mode is common to codes presently used for nuclear accident source term evaluations. These findings point to the need for an expanded experimental data base, both to validate multiple-component aerosol behavior codes and to supply the necessary data to drive them.