ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Hans Jordan, Philip M. Schumacher, Vladimir Kogan
Nuclear Technology | Volume 72 | Number 2 | February 1986 | Pages 148-157
Technical Paper | Nuclear Safety | doi.org/10.13182/NT86-A33737
Articles are hosted by Taylor and Francis Online.
A two-component aerosol system is investigated using the MSPEC code, which models the dynamic behavior of particle composition as a function of particle size. The predicted aerosol concentration behavior is shown to be sensitive to several parameters and model choices, in contrast to the situation for singlecomponent aerosol systems, where these parameters and models appear to play a distinctly uncritical role. In addition, the predicted aerosol concentration behavior is shown to significantly diverge from that predicted by MSPEC using a “single-component” model mode that assumes uniform particle composition across the size distribution. This latter mode is common to codes presently used for nuclear accident source term evaluations. These findings point to the need for an expanded experimental data base, both to validate multiple-component aerosol behavior codes and to supply the necessary data to drive them.