ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Franklyn M. Clikeman, Sai-Chi Mo, Karl O. Ott, Gary Alan Harms, H. P. Chou, R. H. Johnson
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 341-352
Technical Paper | Analyse | doi.org/10.13182/NT85-A33731
Articles are hosted by Taylor and Francis Online.
Six capture rates, five fission rates, and one inelastic scattering rate have been measured as a function of radius in the blanket of the Fast Breeder Blanket Facility, a facility designed to simulate the transport of neutrons in fast reactor blankets. The measured reaction rates were compared with the reaction rates obtained from a typical two-dimensional calculation. The calculated reaction rates agree well with the measurements at the inside of the blanket but diverge from the measurements with increasing blanket penetration. Two effects were found to account for all of the differences between the calculated and measured reaction rates. First, a quantity approximately equal to the neutron number density decreases more rapidly across the blanket in the calculations than the measurements would indicate. Second, a self-shielding transition effect was noticeable around the converter/blanket interface. Furthermore, a mutual shielding effect between 238U cross-section resonances and detector foil resonances caused additional differences between the measurements and calculations of three capture rates for materials commonly used in neutron dosimetry experiments. The experimental techniques and the results of the reaction rate measurements are presented in detail, including a theoretical foil correction (by means of integral transport theory) that replaces the previously used experimental correction. This work completes and complements earlier experiments, comparisons, and interpretations.