ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Franklyn M. Clikeman, Sai-Chi Mo, Karl O. Ott, Gary Alan Harms, H. P. Chou, R. H. Johnson
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 341-352
Technical Paper | Analyse | doi.org/10.13182/NT85-A33731
Articles are hosted by Taylor and Francis Online.
Six capture rates, five fission rates, and one inelastic scattering rate have been measured as a function of radius in the blanket of the Fast Breeder Blanket Facility, a facility designed to simulate the transport of neutrons in fast reactor blankets. The measured reaction rates were compared with the reaction rates obtained from a typical two-dimensional calculation. The calculated reaction rates agree well with the measurements at the inside of the blanket but diverge from the measurements with increasing blanket penetration. Two effects were found to account for all of the differences between the calculated and measured reaction rates. First, a quantity approximately equal to the neutron number density decreases more rapidly across the blanket in the calculations than the measurements would indicate. Second, a self-shielding transition effect was noticeable around the converter/blanket interface. Furthermore, a mutual shielding effect between 238U cross-section resonances and detector foil resonances caused additional differences between the measurements and calculations of three capture rates for materials commonly used in neutron dosimetry experiments. The experimental techniques and the results of the reaction rate measurements are presented in detail, including a theoretical foil correction (by means of integral transport theory) that replaces the previously used experimental correction. This work completes and complements earlier experiments, comparisons, and interpretations.