Subcooled and saturated nucleate boiling are important physical processes in boiling water reactors (BWRs) under operating and transient conditions and in pressurized water reactors (PWRs) under transient conditions. Good predictions of such processes by system codes such as RETRAN-3D are, therefore, important from a safety and operational point of view.

For this reason, and continuing the validation efforts carried out in the STARS Project at Paul Scherrer Institute, data from experiments in a uniformly heated tube carried out by Bartolomey et al. have been used to assess the subcooled and saturated nucleate boiling models in RETRAN-3D. These experiments were performed at high (~15-MPa) and medium (~7-, 4-, and 3-MPa) pressures. The heat flux (2210 to 420 kW/m2) and mass flux (2123 to 405 kg/s m2) were selected to cover a range of values spanning operating and transient situations in both BWRs and PWRs.

This paper reports on the results obtained with both the four- and five-equation RETRAN-3D flow models. The results show that both models used in RETRAN-3D provide good estimates of subcooled and saturated nucleate boiling in heated tubes. The four-equation model, which makes use of the Electric Power Research Institute void fraction profile fitting model for the reactivity feedback only, shows the best performance for high mass fluxes, whereas the five-equation model, which directly computes the vaporization rate, performs better at low mass fluxes and relatively high heat fluxes.

In addition to the results from RETRAN-3D, results obtained with the system code RELAP-5 are included in the plots and used to support the conclusions and to perform a comparative analysis of the methods used by the codes.