ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Philipp Schmuck
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 314-325
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT85-A33729
Articles are hosted by Taylor and Francis Online.
An efficient and simple method to compute one-dimensional steady-state and transient turbulent single-phase flows across singularities (e.g., sudden contractions or expansions in ducted flows) is presented. This method accounts for the effective inertia of a fluid at a constriction and the irreversible pressure losses caused by recirculation zones generated near a singularity. For selected singularities of technical interest, algebraic expressions for the equivalent inertia lengths and the hydraulic resistance coefficients are presented. The implementation of the method into one-, two-, and three-dimensional numerical fluid dynamics codes is explained and the limitations of the method are discussed. The method is also extended to two-phase flow where additional flow parameters characterizing the momentum exchange between the phases play a role.