ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Philipp Schmuck
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 314-325
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT85-A33729
Articles are hosted by Taylor and Francis Online.
An efficient and simple method to compute one-dimensional steady-state and transient turbulent single-phase flows across singularities (e.g., sudden contractions or expansions in ducted flows) is presented. This method accounts for the effective inertia of a fluid at a constriction and the irreversible pressure losses caused by recirculation zones generated near a singularity. For selected singularities of technical interest, algebraic expressions for the equivalent inertia lengths and the hydraulic resistance coefficients are presented. The implementation of the method into one-, two-, and three-dimensional numerical fluid dynamics codes is explained and the limitations of the method are discussed. The method is also extended to two-phase flow where additional flow parameters characterizing the momentum exchange between the phases play a role.