ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Rakesh Chawla, Walter Seifritz
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 228-235
Technical Paper | Fuel Cycle | doi.org/10.13182/NT85-A33721
Articles are hosted by Taylor and Francis Online.
The application of a symbiosis between light water reactors (LWRs) and 235U-Pu advanced pressurized water reactors (APWRs) has been found to have certain positive features as a strategy interim to the introduction of fast breeders and Pu-Udepl APWRs. On the basis of a particular model for the two-component system, it has been quantitatively shown how, as a result of the lower Pufiss inventory of the 235U-Pu APWR as well as its self-sufficiency in plutonium, the installed APWR capacity can grow faster than is the case for Pu-Udepl APWRs. The benefits, however, are to be realized at the expense of an increased absolute uranium ore consumption, since the 235U-Pu APWR does require a finite enriched-uranium feed. While, from the point of view of global energy policy, the fast breeder clearly holds the key to a nuclear generating capacity in the terawatt(electric) range, the present delays in its large-scale commercialization render it important to evaluate the pros and cons of alternative interim strategies. It is seen that such evaluations need to be made from the twin viewpoints of (a) improved uranium utilization, relative to standard L WRs, and (b) the quantities of effectively “stored” fissile plutonium.