ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Anton Bayer
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 217-227
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33720
Articles are hosted by Taylor and Francis Online.
As a continuation of the “German Risk Study: Phase A,” further plant-oriented analysis has been performed and the off-site accident consequence model has been partially improved. The plant-oriented analysis carried out at the Karlsruhe Nuclear Research Center has been focused on two release categories, namely FK2 (core meltdown followed by immediate release of radionuclides from the leaking containment) and FK6 (core meltdown followed by late release of radionuclides as a result of failure due to overpressure in the containment). The thermohydraulic processes in the molten mass and the behavior of the fission and activation products released from the molten mass are considered in a more realistic way. The improvements of the off-site accident consequence model relate mainly to a more realistic modeling of the deposition and resuspension processes, to the ingestion submodel, and to dose factors. The results show that the improvements of the off-site accident consequence model do not change the final results dramatically; the model rather draws a more realistic picture of the interrelated processes, and consequently allows the application of the model to other problems in the nuclear field as well. From the investigations belonging to the plant-oriented analysis it appears, however, that the releases to be expected from postulated accidents are remarkably lower. Consequently, the risk is lower than assessed in Phase A of this study.