ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Helmut Jacobs
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 131-144
Technical Paper | Fusion | doi.org/10.13182/NT85-A33715
Articles are hosted by Taylor and Francis Online.
Modifications of Rayleigh-Taylor instability growth by a gradual density increase instead of a step increase, finite fluid thickness, convection (or ablation), three-dimensional disturbances, nearby stable stratification or fixed boundaries, and nonlinear saturation are quantitatively assessed in typical model cases. To account for gradual density transitions, novel approximate but conservative correlations are given that can replace a hitherto widely used incorrect relation. The stabilizing effects of stable stratification, a fixed boundary (below), and a free surface (above) close to the instability zone are discussed in detail for the first time. For the effect of convection a new and simple derivation of Bodner’s formula is presented, which reveals that the formula describes a fictitious effect due to observation of the disturbance at a moving location. A half-analytical procedure is proposed that allows an account at the same time for several effects resulting from the actual density profile and the possible variations of this profile and its acceleration with time, for example, during ablative acceleration of thin foils.