ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Ivars Neretnieks
Nuclear Technology | Volume 71 | Number 2 | November 1985 | Pages 458-470
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT85-A33698
Articles are hosted by Taylor and Francis Online.
The diffusivities measured by various investigators of several species in compacted bentonite clay have been compiled and analyzed. Small anions diffuse slower than an uncharged molecule such as methane. Large anions move orders of magnitude slower still. The actinides thorium, uranium, plutonium, neptunium, and americium are considerably retarded by sorption effects. Their movement can be explained by pore diffusion with retardation. Cesium, strontium, and protactinium move considerably faster than can be explained by these effects. The faster mobility is probably due to surface migration. A simplified model is presented by which the importance of the backfill barrier in retarding the radionuclides can be assessed. It is based on the computation of the evolution of the concentration profile of the diffusing nuclide in the backfill. Using this model, the flow rate out from the backfill to the flowing water can be compared to the inflow into the backfill due to leaching. A second model treats nuclides with solubility limitations in a similar way. A diagram is presented where the maximum outflow or concentration of a nuclide from the backfill can be determined as a function of barrier thickness and nuclide diffusivity and decay constant. Using the experimentally obtained diffusivities, it is found that a 0.375-m-thick backfill will eventually let through practically all 129I, 99Tc, 226Ra, 231Pa, 234U, 235U, 238U, and 237Np. The maximum release rate for 137Cs, 90Sr, 239Pu, 240Pu, and 243Am will decrease by one to three orders of magnitude compared to the leach rate. Americium-241 will decay to insignificance in the backfill.