ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Gary S. Was, Ronald Christensen, Chang Park, Richard W. Smith
Nuclear Technology | Volume 71 | Number 2 | November 1985 | Pages 445-457
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT85-A33697
Articles are hosted by Taylor and Francis Online.
A set of statistical patterns characterizing the conditions for failure of Type 304 stainless steel clad light water reactor fuel is formulated using a 450-assembly cycle data base from the Connecticut Yankee reactor and an information-theoretic (entropy) criterion of pattern formation. The pattern files, consisting of features formulated from output data obtained from the deterministic fuel performance code FCODE-BETA/SS, are partitioned into five failure and six nonfailure patterns. The failure probabilities of the patterns span the 0.17 to 37.47% range, as compared with the data base average of 2.86%. Features that contribute to failure patterns include large swings in the linear power at high burnup, frequent stress cycling at the ridge, and low coolant pH at high linear power. Contributing to nonfailure are low fission gas release, high axial uniformity in linear power, peak burnup, and clad creep strain at the ridge. The feature describing cycling of the linear power agrees qualitatively with previously identified factors contributing to failure of stainless steel clad fuel in the Connecticut Yankee reactor. From an operational standpoint, the fuel failure probability can be reduced by minimizing the number and magnitude of power ramps and maintaining a neutral coolant pH.