ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Om Pal Singh, P. Bhaskar Rao
Nuclear Technology | Volume 71 | Number 2 | November 1985 | Pages 411-416
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33693
Articles are hosted by Taylor and Francis Online.
The core disruptive accident (CDA) analysis of liquid-metal fast breeder reactors is often performed using the saturated vapor pressure equation of state for the fuel. However, during the transient heating of the fuel in a voided core in the disassembly phase of CDAs, the fuel vapor pressure buildup may lag behind the temperature rise and thus may lead to the delayed disassembly of the core and the consequent large energy release. The formulations for such transient vapor pressure buildup and the results on the dynamics of fuel vapor pressure during the transient heating and its influence on the thermal energy release in a CDA are presented. The energy release calculations have been performed by incorporating the present formalism in the disassembly analysis code VENUS-II. In view of the uncertainties in some of the physical parameters, a parametric study was conducted to evaluate the effects of such uncertainties in their values on the results. These results are discussed in detail.